Группа В59

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

30ЛОТО

Методы атомно-эмиссионного анализа

Gold. Methods of atomic-emission analysis

ОКСТУ 1709

Дата введения 1990-07-01

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Главным Управлением драгоценных металлов и алмазов при Совете Министров СССР РАЗРАБОТЧИКИ
- В.А.Дмитриев, канд. техн. наук; В.П.Томашевский (руководители темы); Н.Д.Сергиенко; И.Б.Курбатова; Т.А.Бабаянц; Т.А.Кислицина
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 21.12.88 N 4375

Изменение N 1 принято Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол N 11 от 25.04.97)

Зарегистрировано Техническим секретариатом МГС N 2519 За принятие изменения проголосовали:

Наименование государства	Наименование национального органа по стандартизации
Азербайджанская Республика	Азгосстандарт
Республика Армения	Армгосстандарт
Республика Беларусь	Госстандарт Беларуси
Грузия	Грузстандарт
Республика Казахстан	Госстандарт Республики Казахстан
Киргизская Республика	Киргизстандарт
Республика Молдова	Молдовастандарт
Российская Федерация	Госстандарт России
Республика Таджикистан	Таджикгосстандарт
Туркменистан	Главная государственная инспекция Туркменистана
Республика Узбекистан	Узгосстандарт

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта
<u>ΓΟCT 10691.1-84</u>	2.2, 3.2
<u>ΓΟCT 14261-77</u>	2.2, 3.2
<u>ΓΟCT 18300-87</u>	2.2

- 5. Ограничение срока действия снято по протоколу N 7-95 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 11-95)
- 6. ПЕРЕИЗДАНИЕ (июнь 1999 г.) с Изменением N 1, утвержденным в сентябре 1997 г. (ИУС 12-97)

Настоящий стандарт устанавливает методы атомно-эмиссионного определения примесей: серебра, меди, железа, платины, палладия, родия, висмута, свинца, сурьмы, цинка, марганца, никеля, хрома, олова, мышьяка, кремния, магния, кадмия, алюминия и теллура в золоте с массовой долей золота не менее 99,9%.

(Измененная редакция, Изм. N 1).

1. ATOMHO-ЭМИССИОННЫЙ МЕТОД ОПРЕДЕЛЕНИЯ ПРИМЕСЕЙ В ОБРАЗЦАХ ПРОИЗВОЛЬНОЙ ФОРМЫ

Метод основан на испарении и возбуждении атомов пробы из глобулы (жидкой капли расплава) в дуговом разряде, фотографической регистрации спектра с последующим измерением интенсивности спектральных линий определяемых элементов. Связь интенсивности линии с содержанием элемента в пробе устанавливают с помощью градуировочного графика по стандартным образцам.

Метод позволяет определять массовые доли примесей в интервалах, приведенных в табл.1.

Эт 0,0001 до 0,008
"0,0001 " 0,008
"0,0003 " 0,02
"0,0008 " 0,01
"0,0003 " 0,01
"0,0001 " 0,003
" 0,0002 " 0,01
" 0,0002 " 0,01
" 0,0002 " 0,01
" 0,0002 " 0,01
" 0,0001 " 0,005
"0,0001 " 0,003
"0,0001 " 0,003

Олово	" 0,0002 " 0,01
Мышьяк	" 0,0005 " 0,010
Магний	"0,0002 " 0,005
Кремний	"0,0002 " 0,010
Алюминий	"0,0002 " 0,010
Кадмий	"0,0002 " 0,005
Теллур	" 0,0002 " 0,005

Нормы погрешности результатов анализа определяемых значений массовых долей примесей с доверительной вероятностью P =0,95 приведены в табл.2.

Массовая доля примеси, %	Норма погрешности, %
0,00010	±0,00006
0,00030	±0,00010
0,0005	±0,0002
0,0010	±0,0004
0,0030	±0,0008
0,0050	±0,0015
0,008	±0,002
0,020	±0,004

(Измененная редакция, Изм. N 1).

1.1. Общие требования

Общие требования к методу анализа по <u>ГОСТ 27973.0</u>.

1.2. Аппаратура, реактивы и материалы

Спектрограф кварцевый средней дисперсии или спектрограф дифракционный большой дисперсии.

Генератор дуги переменного тока.

Микрофотометр.

Ослабитель кварцевый трехступенчатый.

Плита электрическая с закрытой спиралью.

Фотопластинки спектрографические типов 1, 2, 3, ЭС или другие контрастные фотоматериалы.

Электрододержатели с принудительным охлаждением.

Электроды угольные спектрально-чистые марки ОСЧ-7 - 3:

- диаметром 6-10 мм, длиной 30-50 мм с конусным углублением 1 мм;
- диаметром 6-10 мм, длиной 30-50 мм, заточенные на усеченный конус или полусферу.

Пинцет.

Станок для заточки угольных электродов.

Весы аналитические 2-го класса.

Пресс-форма стальная с внутренним диаметром матрицы 3-5 мм.

Тигли фарфоровые по ГОСТ 9147.

Проявитель контрастный и фиксаж для фотопластинок.

Спирт этиловый ректификованный технический по ГОСТ 18300.

Кислота соляная особой чистоты по ГОСТ 14261, разбавленная 1:1.

Стандартные образцы состава золота.

(Измененная редакция, Изм. N 1).

1.3. Подготовка к анализу

От пробы отбирают четыре навески массой 200 мг каждая, от каждого стандартного образца - две. Поверхность золота очищают в соответствии с <u>ГОСТ 27973.0</u>.

Перед началом работы на спектрографе необходимо:

- проверить правильность установки трехступенчатого ослабителя, ширины щели;
 - очистить электрододержатели спиртом от поверхности загрязнений;
 - включить водяное охлаждение электрододержателей;
- проверить исправность блокировки и защитного заземления на штативе и генераторе.

1.4. Проведение анализа

Подготовленную к анализу навеску пробы или стандартного образца помещают в углубление нижнего угольного электрода. Противоэлектродом служит угольный стержень, заточенный на усеченный конус или полусферу.

Спектры фотографируют на спектрографе с трехлинзовой системой освещения щели через трехступенчатый ослабитель.

Ширина щели спектрографа 0,015-0,020 мм; экспозиция - 30-60 с.

Межэлектродный промежуток устанавливают по увеличенному изображению дуги на экране промежуточной диафрагмы высотой 5 мм и поддерживают строго постоянным, корректируя его в течение всей экспозиции.

В качестве источника возбуждения спектров применяют дугу переменного тока силой тока 3-5 A, фаза поджига 60°.

При определении содержания серебра и меди более 0,003% фотографирование спектров проб проводят повторно на фотоматериалах меньшей чувствительности. Для каждого стандартного образца получают по две, а для каждой пробы - по четыре спектрограммы. Фотопластинки проявляют, ополаскивают в воде, фиксируют, промывают в проточной воде и сушат.

Длины волн аналитических линий, рекомендуемых для выполнения анализа, приведены в табл.3.

Значения почернений фона, используемого в качестве линий сравнения, должны находиться в области нормальных почернений.

Определяемый элемент	Длина волны аналитической линии, нм	Линия сравнения	Интервал определяемых массовых долей, %
Серебро	328,07	Фон	0,0001-0,003
	328,07	Золото - 330,83 нм	0,003-0,008
Медь	327,40	Фон	0,0001-0,003
	327,40	Золото - 330,83 нм	0,003-0,008
	324,75	Фон	0,0001-0,001
Железо	259,84	Фон	0,0003-0,005
	259,94		0,0003-0,005
	275,57		0,005-0,02
Платина	265,94	Фон	0,0008-0,01
Палладий	324,27	Фон	0,0003-0,01
	340,46		
Родий	339,68	Фон	0,0001-0,003

	343,49		
Висмут	306,77	Фон	0,0002-0,01
Свинец	261,42	Фон	0,0002-0,01
	266,32		0,005-0,01
Сурьма	259,81	Фон	0,0002-0,005
	287,79		0,005-0,01
Цинк	334,50	Фон	0,0002-0,01
	330,26		
	330,29		
Марганец	279,48	Фон	0,0001-0,001
	280,11		0,001-0,005
Никель	305,43	Фон	0,0001-0,002
	341,48		
Хром	276,66	Фон	0,0001-0,003

Олово	326,23	Фон	0,0002-0,01
	284,00		
Мышьяк	234,98	Фон	0,0005-0,0010
	278,02	Фон	0,0010-0,010
Кремний	288,16	Фон	0,0002-0,010
Магний	277,98	Фон	0,0002-0,0010
	280,27	Фон	0,0010-0,005
Алюминий	308,22	Фон	0,0002-0,010
Кадмий	326,11	Фон	0,0002-0,005
Теллур	238,57	Фон	0,0002-0,005

(Измененная редакция, Изм. N 1).

1.5. Обработка результатов

Определение содержания примесей проводят по методу "трех эталонов". На каждой спектрограмме измеряют почернения аналитической линии определяемого элемента $S_{\pi+\varphi}$ (см. табл.3) и близлежащего фона S_{φ} (минимальное почернение рядом с аналитической линией определяемого элемента с любой стороны, но с одной и той же во всех спектрах на одной фотопластинке) или линии сравнения $S_{\pi,cp+\varphi}$. Вычисляют разность почернений $\Delta S = S_{\pi+\varphi} - S_{\varphi}$ или $\Delta S = S_{\pi+\varphi} - S_{\pi,cp+\varphi}$. По значениям ΔS_1 и ΔS_2 , полученным по двум спектрограммам для каждого стандартного образца, находят среднее арифметическое $\Delta \overline{S}$.

Градуировочный график строят в координатах: среднее значение разности почернений ($\Delta \overline{S}$) линии определяемого элемента и фона - логарифм массовой доли определяемого элемента в стандартном образце. По результатам фотометрирования спектрограмм проб получают значение $\Delta S = S_{\pi+\varphi} - S_{\varphi}$ и по градуировочному графику находят массовую долю примеси в анализируемой пробе золота.

За результат анализа принимают среднее арифметическое значение результатов четырех параллельных определений, полученных на одной фотопласти

нке.

1.6. Контроль точности результатов анализа

1.6.1. При контроле сходимости и воспроизводимости расхождения результатов параллельных определений (разность между наибольшим и наименьшим из четырех определений) и результатов двух анализов с доверительной вероятностью P = 0.95 не должны превышать значений допускаемых расхождений d, приведенных в табл.4.

Массовая доля элемента, %	Абсолютное допускаемое расхождение, d , %
0,00010	0,00008
0,00030	0,00015
0,0005	0,0003
0,0010	0,0005
0,003	0,001
0,005	0,002
0,008	0,003
0,020	0,006

Для промежуточных значений массовых долей допускаемые расхождения рассчитывают методом линейной интерполяции.

1.6.2. Контроль точности результатов анализа проводят по ГОСТ 27973.0.

2. АТОМНО-ЭМИССИОННЫЙ МЕТОД ОПРЕДЕЛЕНИЯ ПРИМЕСЕЙ В ОБРАЗЦАХ, ИЗГОТОВЛЕННЫХ В ВИДЕ СТЕРЖНЕЙ

Метод основан на испарении и возбуждении атомов пробы в дуговом или искровом разряде, фотографической регистрации спектра с последующим измерением интенсивности спектральных линий определяемых элементов. Связь интенсивности линии с содержанием элемента устанавливают с помощью градуировочного графика по стандартным образцам.

Метод позволяет определять содержание примесей в интервалах, приведенных в табл.5.

Определяемый элемент	Массовая доля, %
Серебро	От 0,0001 до 0,02
Медь	" 0,0001 " 0,02
Железо	" 0,0002 " 0,005
Платина	" 0,0002 " 0,01
Палладий	" 0,0002 " 0,01
Родий	" 0,0002 " 0,003
Висмут	" 0,0001 " 0,005
Свинец	" 0,0003 " 0,01
Сурьма	" 0,0002 " 0,01
Цинк	" 0,0003 " 0,01
Марганец	" 0,0001 " 0,005
Никель	" 0,0002 " 0,002
Хром	" 0,0002 " 0,003

Олово	" 0,0002 " 0,01
Мышьяк	" 0,0005 " 0,010
Магний	" 0,0002 " 0,005
Кремний	" 0,0002 " 0,010
Алюминий	" 0,0002 " 0,010
Кадмий	" 0,0002 " 0,005
Теллур	" 0,0002 " 0,005

Нормы погрешности результатов анализа определяемых значений массовых долей примесей с доверительной вероятностью P =0,95 приведены в табл.6.

Массовая доля примеси, %	Норма погрешности, %
0,00010	±0,00006
0,00030	±0,00010
0,0005	±0,0002
0,0010	±0,0004
0,0030	±0,0008
0,0050	±0,0015
0,008	±0,002
0,020	±0,005

(Измененная редакция, Изм. N 1).

2.1. Общие требования

Общие требования к методу анализа - по <u>ГОСТ 27973.0</u>.

2.2. Аппаратура, материалы и реактивы

Спектрограф кварцевый средней дисперсии или спектрограф дифракционный.

Генератор универсальный, обеспечивающий искровой разряд и дуговой разряд переменного тока.

Штатив с принудительным охлаждением.

Плита электрическая с закрытой спиралью.

Фотопластинки спектрографические типов 1, 2, 3, ЭС или другие контрастные фотоматериалы.

Микрофотометр.

Напильники бархатные.

Тигли фарфоровые по ГОСТ 9147.

Кислота соляная особой чистоты по ГОСТ 14261, разбавленная 1:1.

Проявитель контрастный и фиксаж для фотопластинок.

Стандартные образцы состава золота в виде литых стержней.

(Измененная редакция, Изм. N 1).

2.3 Подготовка к анализу

На анализ поступают пробы в виде двух литых стержней диаметром 6-8 мм, длиной 20-70 мм. Торцы стержней затачивают на полусферу, обрабатывают бархатным напильником до получения гладкой поверхности, после чего поверхность золота очищают в соответствии с ГОСТ 27973.1.

2.4. Проведение анализа

Пробы, подготовленные согласно п.2.3, служат верхним и нижним электродами при фотографировании спектров.

Спектры фотографируют при ширине щели спектрографа 0,015 мм. При освещении щели через однолинзовый конденсор расстояние между электродами 1,5-2,0 мм устанавливают по шаблону. При освещении щели через трехлинзовый конденсатор высота промежуточной диафрагмы 5 мм; экспозиция 30-60 с.

Длины волн аналитических спектральных линий, рекомендуемые для выполнения анализа, приведены в табл. 7.

При определении массовых долей серебра и меди более 0,002% для возбуждения спектров применяют искровой разряд, электрический ток заряда конденсатора 2,0-2,5 A, время обыскривания 15 с.

При определении массовых долей серебра и меди менее 0,004%, а также массовых долей железа, платины, палладия, родия, висмута, свинца, сурьмы, цинка, марганца, никеля, хрома и олова для возбуждения спектра применяют дуговой разряд переменного тока силой тока 5-6 А, время обжига 15 с.

В таких же условиях фотографируют спектры стандартных образцов состава золота.

Для каждой анализируемой пробы получают по четыре спектрограммы, для каждого стандартного образца - по две.

Экспонированную фотопластинку проявляют, ополаскивают водой, фиксируют, промывают в проточной воде и сушат.

2.5. Обработка результатов

На каждой спектрограмме измеряют почернение аналитической линии определяемого элемента $\mathcal{S}_{\pi+\varphi}$ (см. табл.7) и близлежащего фона \mathcal{S}_{φ} (минимальное почернение рядом с аналитической линией определяемого элемента с любой стороны, но с одной и той же во всех спектрах на одной фотопластинке) или линии элемента сравнения $\mathcal{S}_{\pi,cp,+\varphi}$.

Определяемый элемент	Длина волны аналитической линии, нм	Линия сравнения	Интервал определяемых массовых долей, %
Серебро	328,07	Фон	0,0001-0,004
	328,07	Золото - 330,83 нм	0,002-0,02
Медь	327,40	Фон	0,0001-0,004
	324,75		0,0001-0,001
	327,40	Золото - 330,83 нм	0,003-0,02
Железо	259,94	Фон	0,0002-0,005
	259,84		
	302,06		
Платина	265,94	Фон	0,0002-0,01
Палладий	324,27	Фон	0,004-0,01
	340,46		0,0002-0,01
]			l l

	342,12		0,0002-0,01
Родий	339,68	Фон	0,001-0,003
	343,49		0,0002-0,003
Висмут	306,77	Фон	0,0001-0,005
	298,90		0,001-0,005
Свинец	261,42	Фон	0,0003-0,01
	266,32		0,004-0,01
Сурьма	259,81	Фон	0,0002-0,004
	287,79		0,004-0,01
Цинк	330,26	Фон	0,0003-0,01
	334,50		
Марганец	279,83	Фон	0,0001-0,005
	279,48		
Никель	305,08	Фон	0,0002-0,002
	301,20		

	341,48		
Хром	302,16	Фон	0,0002-0,003
	284,32		
	284,98		
Олово	317,50	Фон	0,0002-0,01
	326,23		
	284,00		
Мышьяк	234,98	Фон	0,0005-0,0010
	278,02		0,0010-0,010
Кремний	288,18	Фон	0,0002-0,010
Магний	277,98	Фон	0,0002-0,0010
	280,27		0,0010-0,005
Алюминий	308,22	Фон	0,0002-0,005
Кадмий	326,11	Фон	0,0002-0,005

|--|

Вычисляют разность почернений $\Delta S = S_{\mathbf{n}+\mathbf{\Phi}} - S_{\mathbf{\Phi}}$ или $\Delta S = S_{\mathbf{n}+\mathbf{\Phi}} - S_{\mathbf{n}.\mathrm{cp}.+\mathbf{\Phi}}$.

По значениям ΔS_1 и ΔS_2 , полученным по двум спектрограммам для каждого стандартного образца, находят среднее арифметическое $\Delta \overline{S}$.

От полученных значений $\Delta \overline{S}$ для стандартных образцов и ΔS для анализируемых проб переходят к соответствующим значениям логарифмов относительной интенсивности $\frac{1g}{J_{\pm}}$, используя приложение к <u>ГОСТ 13637.1</u>.

Градуировочный график строят в координатах: логарифм относительной интенсивности $\lg \frac{J_\pi}{J_\Phi}$ (или $^{\triangle S}$ при использовании элемента сравнения) и логарифм массовой доли определяемого элемента в стандартном образце.

С помощью градуировочного графика находят массовую долю определяемого элемента в пробе.

За результат анализа принимают среднее арифметическое значение результатов четырех параллельных определений.

(Измененная редакция, Изм. N

1).

- 2.6. Контроль точности результатов анализа
- 2.6.1. При контроле сходимости и воспроизводимости расхождения результатов параллельных определений (разность между наибольшим и наименьшим из четырех определений) и результатов двух анализов с доверительной вероятностью P = 0.95 не должны превышать значений допускаемых расхождений d, приведенных в табл.8.

Массовая доля элемента, %	Абсолютное допускаемое расхождение d , %
0,00010	0,00008
0,00030	0,00015
0,0005	0,0002
0,0010	0,0004
0,0030	0,0010
0,0050	0,0015
0,008	0,002
0,020	0,004

Для промежуточных значений массовых долей допускаемые расхождения рассчитывают методом линейной интерполяции.

2.6.2. Контроль точности результатов анализа проводят по <u>ГОСТ 27973.0</u>. Электронный текст документа подготовлен АО "Кодекс" и сверен по: официальное издание

Золото. Методы анализа: Сб. ГОСТов. - М.: ИПК Издательство стандартов, 1999