ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Толщиномеры покрытий КОНСТАНТА МК4

Назначение средства измерений

Толщиномеры покрытий КОНСТАНТА МК4 (далее - толщиномеры) предназначены для измерений толщины:

- неферромагнитных покрытий на ферромагнитных основаниях;
- диэлектрических покрытий на электропроводящих ферро- и неферромагнитных основаниях.

Описание средства измерений

Принцип работы толщиномеров основан на магнитоиндукционном и вихретоковом методах измерений.

Толщиномеры состоят из блока обработки информации и преобразователя. Толщиномеры изготавливаются в двух исполнениях: с выносным преобразователем на кабеле и с преобразователем, встроенным в корпус блока обработки информации (рисунок 1).

Рисунок 1 - Внешний вид толщиномера со встроенным преобразователем и выносным преобразователем

Клавиатура и графический дисплей расположены на лицевой панели блока обработки информации. Li-Ion аккумулятор расположен внутри корпуса блока обработки информации. Заряд Li-Ion аккумулятора осуществляется через разъем mini USB, который расположен на торцевой поверхности блока обработки информации.

Измерение толщины покрытий выполняется с помощью преобразователей:

ИД1, ИД2, ИД3, ИД4, ИД5 - магнитоиндукционные преобразователи для измерения толщины неферромагнитых покрытий на ферромагнитных основаниях.

ПД1, ПД2, ПД3 - вихретоковые параметрические преобразователи. Преобразователь ПД1 применяют для измерения толщины диэлектрических покрытий на электропроводящих неферромагнитных основаниях, преобразователи ПД2 и ПД3 - для измерения толщины диэлектрических покрытий на электропроводящих ферро- и неферромагнитных основаниях.

ИПД - совмещенные магнитоиндукционные-вихретоковые параметрические преобразователи для измерения толщины неферромагнитных покрытий на ферромагнитных основаниях и диэлектрических покрытий на электропроводящих неферромагнитных основаниях.

Пломбирование осуществляется путем заливки винта на задней панели блока обработки информации полиэтиленом и установкой клейма пломбиром предприятия-изготовителя.

Программное обеспечение

Толщиномеры имеют встроенное программное обеспечение (далее - ПО). ПО обеспечивает обработку и отображение результатов измерений и взаимодействие оператора с толщиномером в соответствии с заданным алгоритмом.

ПО соответствует среднему уровню защиты от непреднамеренных и преднамеренных изменений в соответствии с Р 50.2.077-2014.

Таблица 1 - Идентификационные данные ПО

Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	Константа МК4	
Номер версии (идентификационный номер) ПО	не ниже ver.1.0	
Цифровой идентификатор ПО	0xCC0A5A0C (CRC32)	

Влияние ПО было учтено при нормировании метрологических характеристик.

Метрологические и технические характеристики

1. Диапазоны измерений толщины покрытия приведены в таблице 2.

Таблица 2 - Диапазоны измерений толщины покрытия

Тип преобразователя	Диапазон измерений толщины покрытия, мм
ИД1	от 0 до 0,3
ИД2	от 0 до 2
ИДЗ	от 0 до 5
ИД4	от 0 до 8
ИД5	от 0 до 10
ПД1	от 0 до 2
ПД2	от 0 до 15
ПД3	от 0 до 30
ИПД	от 0 до 1

2. Пределы допускаемой абсолютной погрешности измерений толщины покрытия при температуре окружающего воздуха (20 ± 5) C^0 приведены в таблице 3.

Таблица 3 - Пределы допускаемой абсолютной погрешности измерений толщины покрытия

при температуре окружающего воздуха (20 ± 5) С⁰

Тип	Пределы допускаемой основной абсолютной погрешности измерений
преобразователя	толщины покрытия при температуре окружающего воздуха (20 ± 5) C^0 , мм
1	2
ИД1	±(0,02h+0,002)*
ИД2	$\pm (0,02h+0,002)$ в поддиапазоне от 0 до 1 мм;
	±0,02h в поддиапазоне свыше 1 до 2 мм
ИД3	$\pm (0.02h+0.005)$ в поддиапазоне от 0 до 1 мм;
	±0,02h в поддиапазоне свыше 1 до 5 мм
ИД4	$\pm (0.02h+0.01)$

Продолжение таблицы 3

1	2
ИД5	$\pm (0.02h+0.01)$
ПД1	\pm (0,02h+0,002) в поддиапазоне от 0 до 1 мм;
	±0,02h в поддиапазоне свыше 1 до 2 мм
ПД2	$\pm (0.02h+0.010)^{1}$ в поддиапазоне от 0 до 10 мм;
	$\pm 0,03h^{1}$ в поддиапазоне свыше 10 до 15 мм
	$\pm (0.02h+0.1)^2$
ПД3	$\pm (0.02h+0.010)^{1}$ в поддиапазоне от 0 до 10 мм;
	$\pm 0.03h^{1}$ в поддиапазоне свыше 10 до 30 мм;
	$\pm (0.02h+0.1)^2$
ИПД	±(0,02h+0,002)

^{*}h - измеряемая величина в мм.

3. Пределы допускаемой абсолютной погрешности измерений толщины покрытия при эксплуатации в условиях от минус 10 до плюс 15 0 C и от плюс 25 до плюс 40 0 C для встроенных и выносных преобразователей приведены в таблице 4.

Таблица 4 - Пределы допускаемой абсолютной погрешности измерений толщины покрытия при эксплуатации в условиях от минус 10 до плюс 15 0 C и от плюс 25 до плюс 40 0 C для встроенных

и выносных преобразователей

Тип	Пределы допускаемой абсолютной погрешности измерений толщины
преобразователя	покрытия при эксплуатации в условиях от минус 10 до плюс 15^{0} С и от
	плюс 25 до плюс 40^{0} С для встроенных и выносных преобразователей, мм
ИД1	±1,5·(0,02h+0,002)*
ИД2	$\pm 1,5 \cdot (0,02h+0,002)$ в поддиапазоне от 0 до 1 мм;
	±0,03h в поддиапазоне свыше 1 до 2 мм
ИД3	$\pm 1,5 \cdot (0,02h+0,005)$ в поддиапазоне от 0 до 1 мм;
	±0,03h в поддиапазоне свыше 1 до 5 мм
ИД4	$\pm 1,5 \cdot (0,02h+0,01)$
ИД5	$\pm 1,5 \cdot (0,02h+0,01)$
ПД1	$\pm 1,5 \cdot (0,02h+0,002)$ в поддиапазоне от 0 до 1 мм;
	±0,03h в поддиапазоне свыше 1 до 2 мм
ПД2	$\pm 1,5 \cdot (0,02h+0,010)^1$ в поддиапазоне от 0 до 10 мм;
	$\pm 0,04h^{1}$ в поддиапазоне свыше 10 до 15 мм;
	$\pm 1,5 \cdot (0,02h+0,1)^2$
ПД3	$\pm 1,5 \cdot (0,02h+0,010)^1$ в поддиапазоне от 0 до 10 мм;
	$\pm 0.045 h^{1}$ в поддиапазоне свыше 10 до 30 мм;
	$\pm 1,5 \cdot (0,02h+0,1)^2$
ИПД	$\pm 1,5 \cdot (0,02h+0,002)$

^{*}h - измеряемая величина в мм.

¹ - при измерении толщины диэлектрических покрытий на неферромагнитных электропроводящих основаниях.

² - при измерении толщины диэлектрических покрытий на ферромагнитных электропроводящих основаниях.

¹ - при измерении толщины диэлектрических покрытий на неферромагнитных электропроводящих основаниях.

² - при измерении толщины диэлектрических покрытий на ферромагнитных электропроводящих основаниях.

4. Пределы допускаемой абсолютной погрешности измерений толщины покрытия при эксплуатации в условиях от минус 30 до минус $10~^{0}$ C для выносных преобразователей приведены в таблице 5.

Таблица 5 - Пределы допускаемой абсолютной погрешности измерений толщины покрытия при эксплуатации в условиях в условиях от минус 30 до минус $10~^{0}\mathrm{C}$ для выносных

преобразователей

пресоризовителен			
Тип	Пределы допускаемой абсолютной погрешности измерений толщины		
преобразователя	покрытия при эксплуатации условиях минус 30 до минус 10 °С		
	для выносных преобразователей, мм		
ИД1	$\pm 2 \cdot (0.02h + 0.002)$ *		
ИД2	$\pm 2 \cdot (0,02h+0,002)$ в поддиапазоне от 0 до 1 мм;		
	±0,04h в поддиапазоне свыше 1 до 2 мм		
ИД3	$\pm 2 \cdot (0.02h + 0.005)$ в поддиапазоне от 0 до 1 мм;		
	±0,04h в поддиапазоне свыше 1 до 5 мм		
ИД4	$\pm 2 \cdot (0.02h + 0.01)$		
ИД5	$\pm 2 \cdot (0.02h + 0.01)$		
ПД1	$\pm 2 \cdot (0.02h+0.002)$ в поддиапазоне от 0 до 1 мм;		
	±0,04h в поддиапазоне свыше 1 до 2 мм		
ПД2	$\pm 2 \cdot (0.02\text{h} + 0.010)^{1}$ в поддиапазоне от 0 до 10 мм;		
	$\pm 0,06h^{1}$ в поддиапазоне свыше 10 до 15 мм;		
	$\pm (0.02h+0.1)^2$		
ПД3	$\pm 2 \cdot (0.02h + 0.010)^{1}$ в поддиапазоне от 0 до 10 мм;		
	$\pm 0,06h^{1}$ в поддиапазоне свыше 10 до 30 мм;		
	$\pm 2 \cdot (0.02h+0.1)^2$		
ИПД	$\pm 2 \cdot (0.02h + 0.002)$		
.1.4			

^{*}h - измеряемая величина в мм.

Таблица 6 - Дискретность отсчета

Тип преобразователя	Дискретность отсчета, мм
ИД1	0,001
ИД2	0,001 в поддиапазоне от 0 до 1 мм;
	0,01 в поддиапазоне свыше 1 до 2 мм
ИД3	0,001 в поддиапазоне от 0 до 1 мм;
	0,01 в поддиапазоне свыше 1 до 5 мм
ИД4	0,01 мм
ИД5	0,01 мм
ПД1	0,001 в поддиапазоне от 0 до 1 мм;
	0,01 в поддиапазоне свыше 1 до 2 мм
ПД2	0,01 в поддиапазоне от 0 до 10 мм;
	0,1 в поддиапазоне свыше 10 до 15 мм
ПД3	0,01 в поддиапазоне от 0 до 10 мм;
	0,1 в поддиапазоне свыше 10 до 30 мм
ИПД	0,001

¹ - при измерении толщины диэлектрических покрытий на неферромагнитных электропроводящих основаниях.

² - при измерении толщины диэлектрических покрытий на ферромагнитных электропроводящих основаниях.

^{5.} Дискретность отсчета приведена в таблице 6.

6. Шероховатость основания Ra, мкм, не более

0.1.

7. Масса блока обработки информации со встроенным преобразователем, грамм, не более

85.

8. Масса блока обработки информации с выносным преобразователем, грамм, не более

130.

- 9. Габаритные размеры блока обработки информации со встроенным преобразователем (длина х ширина х высота), мм, не более 125х50х30.
- 10. Габаритные размеры блока обработки информации с выносным преобразователем (длина х ширина х высота), мм, не более 100x50x30.
 - 11. Габаритные размеры выносных преобразователей приведены в таблице 7.

Таблица 7 - Габаритные размеры выносных преобразователей

Тип преобразователя	Габаритные размеры, мм, не более
ИД1	Ø15x70
ИД2	Ø20x90
ИДЗ	Ø20x90
ИД4	Ø25x90
ИД5	Ø25x90
ПД1	Ø20x90
ПД2	Ø25x90
ПД3	Ø60x55
ИПД	Ø25x90

12. Средний срок службы, лет

10.

13. Наработка на отказ, ч

3000.

14. Номинальное напряжение питания, В

3,7.

15. Условия эксплуатации:

- диапазон температуры окружающего воздуха для блока обработки информации и встроенных преобразователей ИД2, ИД3, ПД1, ИПД, °C от минус 10 до плюс 40;
- диапазон температуры окружающего воздуха для выносных преобразователей

ИД1, ИД2, ИД3, ИД4, ИД5, ПД1, ПД2, ПД3, ИПД, °C

от минус 30 до плюс 40;

- диапазон относительной влажности окружающего воздуха, %

от 40 до 80.

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации типографским способом и на заднюю крышку блока обработки информации методом гравировки.

Комплектность средства измерений

Таблица 8 - Комплектность толщиномера

Наименование		Количество, штук
1		2
Толщиномер:		1*
Блок обработки информации со	Блок обработки информации со Блок обработки информации с	
встроенным преобразователем:	выносным преобразователем:	
ИД2	ИД1	
ИДЗ	ИД2	
ПД1	ИД3	
ИПД	ИД4	
	ИД5	
	ПД1	
	ПД2	
	ПДЗ	
	ИПД	

Продолжение таблицы 8

тродотично тистица с	
1	2
Комплект мер толщины покрытий МТ	1
Образец ферромагнитного основания	1**
Образец электропроводящего неферромагнитного основания	1***
Паспорт	1
Руководство эксплуатации	1
Футляр	1
Зарядное устройство	1
Методика поверки	1

^{*} Толщиномер может быть укомплектован одним любым преобразователем из списка по требованию заказчика.

Поверка

осуществляется по документу МП 2512-0011-2016 «Толщиномеры покрытий КОНСТАНТА МК4. Методика поверки», разработанному и утвержденному ФГУП «ВНИИМ им. Д.И. Менделеева» 01 июля 2016 г.

Основные средства поверки: меры толщины покрытий МТ (регистрационный № 50316-12).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки в виде оттиска клейма наносится на свидетельство о поверке или в паспорт на толщиномер.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к толщиномерам покрытий КОНСТАНТА МК4

ТУ 4276-019-27449627-2015 «Толщиномер покрытий КОНСТАНТА МК4. Технические условия».

Изготовитель

ООО «КОНСТАНТА» ИНН 7805666639

Адрес: 198097, г. Санкт-Петербург, ул. Маршала Говорова, д. 29, литер О

Тел.: (812)372-29-03 E-mail: office@constanta.ru

^{**} Поставляется в комплекте с преобразователями ИД1, ИД2, ИД3, ИПД. По требованию заказчика поставляется в комплекте с преобразователями ИД4, ИД5, ПД2, ПД3.

^{***} Поставляется в комплекте с преобразователями ПД1, ИПД. По требованию заказчика поставляется в комплекте с преобразователем ПД2, ПД3.

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологии им. Д.И. Менделеева»

Адрес: 190005, г. Санкт-Петербург, Московский пр., д. 19

Телефон: (812) 251-76-01, факс: (812) 713-01-14

http://www.vniim.ru
E-mail: info@vniim.ru

Аттестат аккредитации ФГУП «ВНИИМ им. Д.И. Менделеева» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311541 от 23.03.2016 г.

заместитель			
Руководителя Федерального			
агентства по техническому			
регулированию и метрологии			С.С. Голубев
	М.п.	« »	2016 г.